

Final Presentation - Group 14

The Team

Gabriel Besana Electrical Engineering

Rafael Nieves Computer Engineering

Jazz Olario Computer Engineering

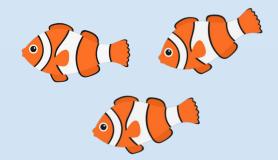
Christian Rosado Arroyo Computer Engineering

Problems and Motivation

Problem

- Inconsistent fish care
- Challenges of taking care of aquatic pets during absence
- Balancing fishkeeping with other responsibilities

Motivation

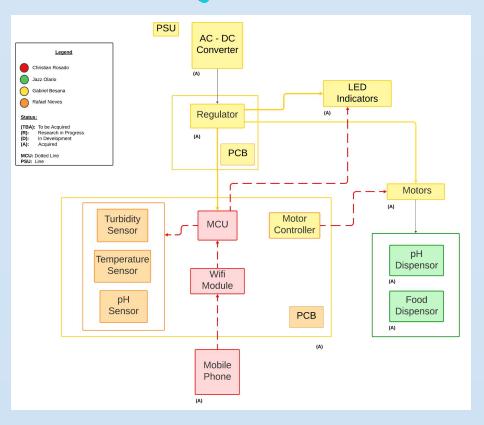

- Improve the aquatic pet's well being.
- Simplify and enhance fish ownership.
- Personal convenience.
- Support fish owners of all experience levels.

Goals and Objectives

- Basic Goals
 - Ensure optimal water conditions.
 - ρH sensor
 - Temperature sensor
 - Turbidity sensor
 - Automated feeding
 - pH solution dispenser
 - Smart light systems
 - Mobile application for full remote monitoring and control
- Stretch Goals
 - Integrate live feed camera
 - Bubble System
 - Comprehensive Aquarium Monitoring and Analytics Dashboard


Engineering Requirements

Specification	Criteria
Power Supply	Wall outlet power
Max Power Consumption	~24 Watts
ρΗ Sensor Response time	≤ 2 min
Temperature Sensor Response Time	≤ 2 min
Temperature Sensor Accuracy	±0.9°F from 14°F to 185°F
ρΗ Sensor Accuracy	4 and 10
Turbidity Sensor Accuracy	<5 NTU
Food Dispenser Accuracy	0.189 Oz Average per 26 sec
pH Dispenser Accuracy	1 tablet at a time
Dispensers Capacity	0.50 Oz
LED Response Time	2ms
Servo Motor Response Time	2ms
Stepper Motor Response Time	200ms
Cost	<\$500



Design Concept

- This 3D-printed PLA container for the AzulTank showcases a robust design that houses all essential components.
- Most PCBs are securely attached to the walls.
- Two sturdy clamps securely attach the container to the edge of an aquarium.
- External access points for the probes make installation and servicing convenient.

Hardware Block Diagram

Temp. Sensor Selection

Manufacturer	Model	Price	Size	Key Features
DFRobot	DS18B20	From	Cable length: 1m	High accuracy
	Waterproof	\$4.50	(Sensor: 6mm	(±0.5°C)
	Probe Probe		diameter)	 Operates on
				3.3V or 5V
				• 1-Wire
				<u>communication</u>
TE	TSYS01P	From	Cable length:	 High accuracy
Connectivity	Waterproof	\$12.00	1.5m (Sensor:	(±0.2°C)
,	•		7mm diameter)	Operates on 5V
			'	 I2C interface
TE	HTU21D	From	Cable length: 1m	 High accuracy
Connectivity	Waterproof	\$15.00	(Sensor: 8mm	(±0.3°C)
′	'	·	diameter)	Operates on 5V
				• I2C interface
				120 interrace

- The main comparison here is in the price range and interface.
- While offering similar accuracy, the other sensors come with complex interfaces and higher prices.

pH Probe Selection

Manufacturer	Model	Price	Size	Key Features
DFRobot	Gravity: Analog pH Sensor Pro	From \$49.45	Probe length: 170.7mm, diameter: 20mm	 Good accuracy (±0.2 pH) Response <2 min Operates on 5V Analog output
Milone Technologies	eTape Liquid Level Sensor (pH)	From \$49.95	Probe length: 120mm, diameter: 8mm	 Great accuracy (±0.05 pH) Response <2 min Operates on 6V - 24V Analog output
DFRobot	Gravity: Analog pH Sensor / Meter Pro Kit	From \$56.90	Probe length: 90mm, diameter: 12mm	 Good accuracy (±0.1 pH) Response <1 min Operates on 5V Analog output

- Analog output makes all sensors a viable option.
- Good for measuring solutions for an extended period of time.

Turb. Probe Selection

				I
Manufacturer	Model	Price	Size	Key Features
Seeed Studio	Grove - Turbidity Sensor v1.2	From \$33.90	Probe length: 45mm, diameter: 33mm	Good accuracyAnalog outputUp to 100 NTU
DFRobot	Gravity: Analog Turbidity Sensor	From \$9.90	Probe length: 42mm, diameter: 32mm	Good accuracy Analog output Up to 100 NTU
Vernier	Turbidity Sensor	From \$124.00	Probe length: 50mm, diameter: 30mm	Very high accuracyAnalog outputUp to 200 NTU

 High ranges of NTU are not required for measuring water clarity in aquarium standards.

CED Selection

Manufacturer	Model	Price	Size	Key Features
Adafruit	NeoPixel Digital RGB LED Strip	\$24.95	3.2 feet	 MCU compatible Operates on 5V Highly customizable Flexible Weatherproof options
HitLights	LED Strip Light	\$29.99	16.4 feet	 Remote controlled Operates on 5V Dimmable Flexible Waterproof options
BTF	WS2812B RGB ECO LED Strip	\$8.99- \$15.99	3.2- 16.4 feet	 MCU compatible Operates on 5V Highly customizable Flexible Waterproof options

 Strips required to be cuttable to fit them in our design in case in case they were too long.

Motor Selection: Stepper

Manufacturer	Model	Price	VDC	Key Features
Adafruit Industries LLC	NEMA 17 Bipolar Hybrid Stepper Motor	\$14.00	12V	 Step Angle 1.8° Ease of use for general application Moderate Torque with 1.2A per phase Large Frame
MIKROE	ROHS 28BYJ-48	\$5.00	<u>5V</u>	 Step angle: 5.625°/64. Reduction ratio: 1:64. Torque: Around 34.3 mN.m for in-traction. Noise level: ≤40 dB.
STEPPERONLINE	NEMA8 Bipolar Microstep Stepper Motor	\$25.08	6V	 Step Angle 1.8° Precise Control Low Torque, Efficient Power Consumption Small frame

- Using the NEMA17 Bipolar model, it didn't give the necessary strength to turn our pH dispenser smoothly.
- The 28BYJ-48 Model worked as intended and allowed for a smooth spin of the dispenser with accurate 45° turns to dispense our pH tablets.

Motor Selection: Servo

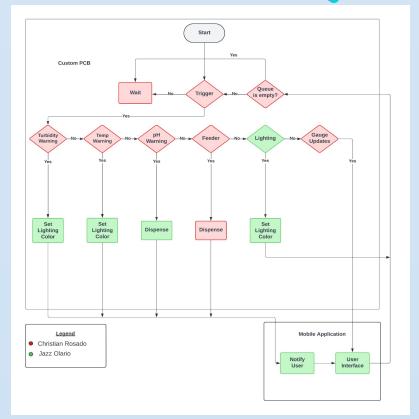
Manufacturer	Model	Price	VDC	Key Features
Parallax Inc.	900-00008	\$15.00	6V	 Speed: 60 RPM at 6V Torque: 38 oz-in (2.7 kg-cm) Continuous rotation for wheeled robotics
TowerPro	SG90	\$4.00	4.8-6V	 Torque: Up to 1.6 kg/cm at 6 V Weight: Approximately 9 grams Rotation: 180 degrees Casing Material: Durable plastic
TowerPro	MG90S	\$10.00	4.8-6V	 Torque: 2.2 kg-cm at 4.8V; 2.5 kg-cm at 6V Speed: 0.1 sec/60° at 6V High durability from metal gear construction

- We chose the SG90 due to the microcontroller applications and standard compatibility with PWM signals.
- Operational voltage is ideal for the 5V signal we send to it.
- Its rotational capabilities was more than sufficient for our food dispenser needs.

Microcontroller Selection

Criteria	TI-MSP430FR6989	Microchip Curiosity PIC32MX470	Expressif Systems ESP32 WROOM 32E - N16
Clock Speed	16Mhz	120Mhz	240Mhz
# of Cores	Single Core	Single Core	Dual Core
Storage	128KB	128KB	16MB
GPIO	83	43	38
ADC Resolution	12-bit	10-bit	12-bit
Wireless Connectivity	N/A	Via Add-ons	Wifi & Bluetooth
Programming	C/C++/Code Composer Studio	C/C++/MP Lab X IDE	C/C++/Arduino IDE
Cost	\$20.00	\$45.00	\$5.00-\$15.00

- Dual-core processor with a higher frequency
- Wi-Fi and Bluetooth support
- Higher RAM and flash storage


PSU Selection

Manufacturer	Model	Price	Watts	Key Features
Desvorry	B08QCBRYPT AC100-240V to DC12V	\$10.99	60W	 Smooth, flicker-free output Full protection of over voltages, over current, short circuits and over temperature
Alitove	ALT-1205 AC 100-240V input to 12V output	\$11.99	60W	 Automatic overload cut-off, over Voltage cut-off, automatic thermal cut-off, short circuit protection. Voltage consistency
<u>LitStar</u>	GMFINE	\$11.99	24W	 Overload, overcharge, short circuit protection Automatic current adjustment (50mA to 2A) Large compatibilities with devices such as cameras, LED strips, routers, etc.

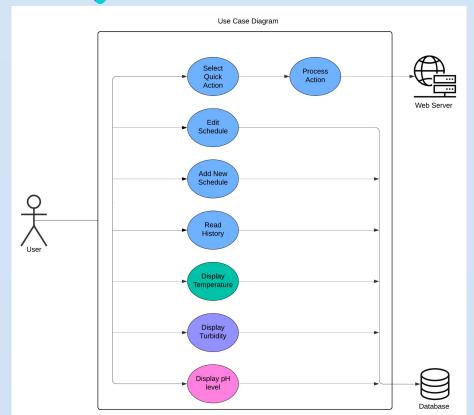
- Our system requires under 2A.
- Lighter loads than intended with our chosen components.
- Voltage regulator rated up to 5A in case of any spikes in voltage or current

Software Block Diagram

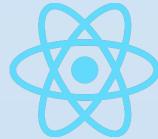
Sensors Communication Protocols:

- Temperature Sensor: One-Wire protocol
- pH Sensor: Analogue Communication
- Turbidity Sensor: Analogue communication

Mobile Application:


Utilizes Adafruit IO to communicate with the MCU.

Use Case Diagram

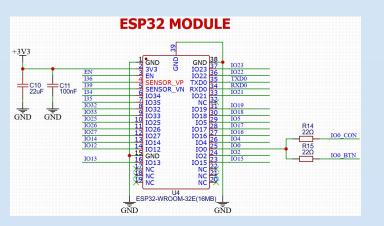


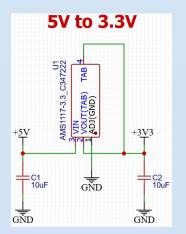
Mobile Development

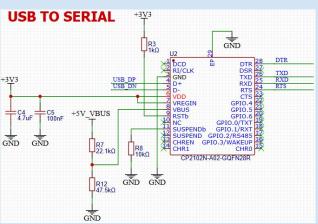
Criteria	Flutter	React Native
Learning Curve	Easier Difficulty	Higher Difficulty
Development Language	Dart	Javascript
Key Development Tools	Flutter Doctor	Ехро Go
Automatic Component Updates	No	Yes
Performance	Faster	Limited by JavaScript bridge
Operating Systems	Windows & MacOS	Windows & MacOS
Cross Platform Development	Yes	Yes
Documentation	Easier to understand for newcomers.	More complex, but robust backed by a large community.

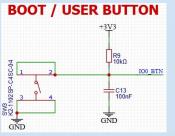
- Development Language: Javascript.
- Offers near native-looking user interfaces.
- Expo Go: Allows developers to see changes in real time.

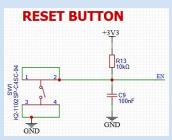
Database Selection

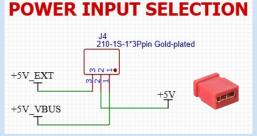

Criteria	SQL	NoSQL
Data Structure	Relational	Semi-structured
Query Language	Standardized query language	Varies by database type
Scalability	Vertically scalable	Horizontally scalable
Documentation	Highly consistent	Varies by database type

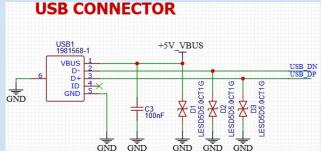

- Standardized query language.
- Schemas ensure consistent data.
- Consistent documentation.

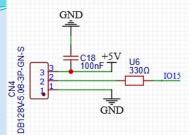


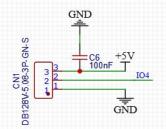


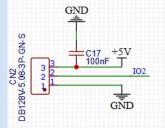

MCUPCB Schematic

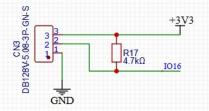


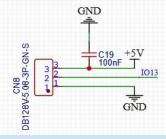


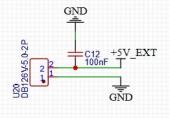


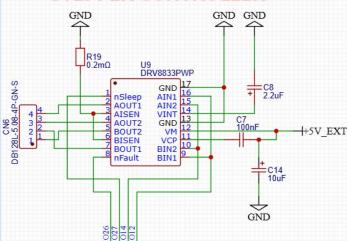


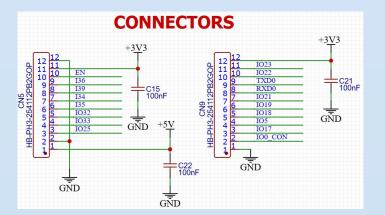

LED LIGHTS


TURBIDITY SENSOR


pH SENSOR

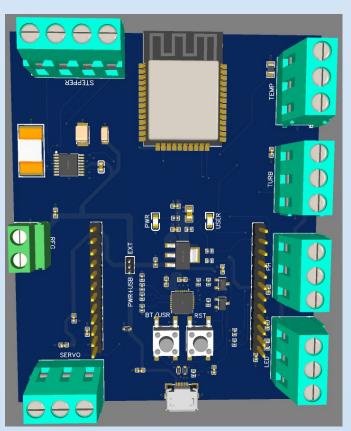

TEMPERATURE SENSOR

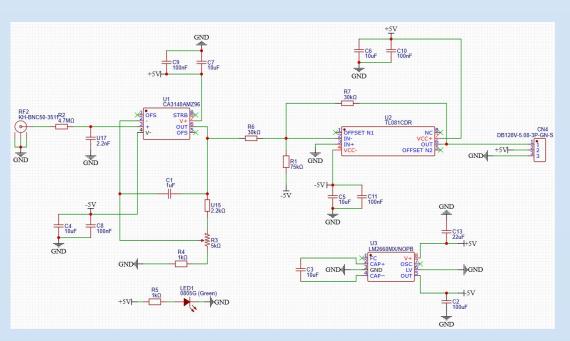

SERVO MOTOR

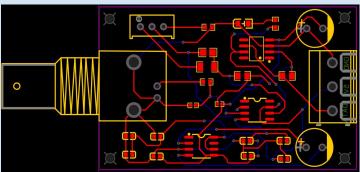


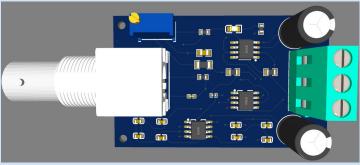
REGULATOR

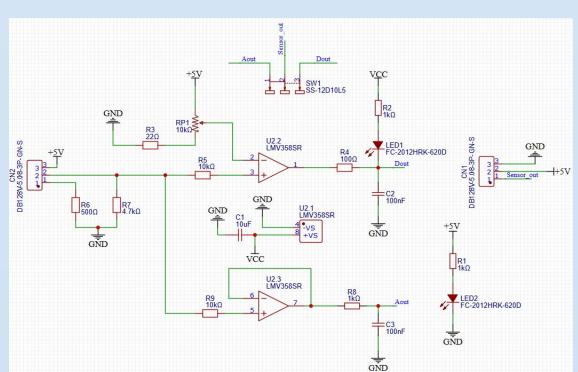

STEPPER CONTROLLER

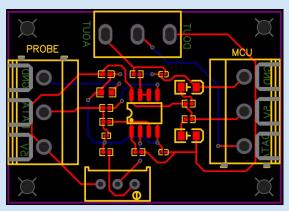


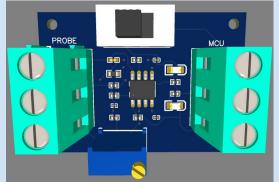




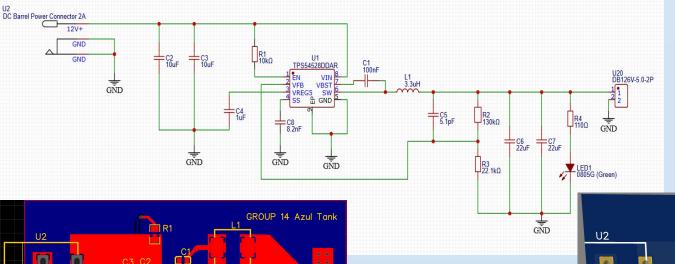


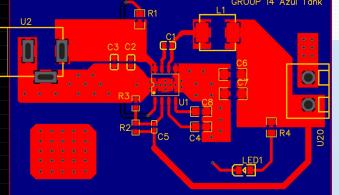


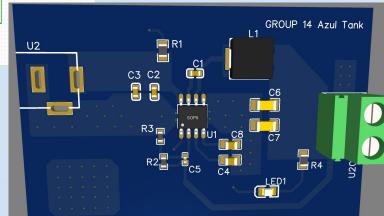




Turbidity PCB Design



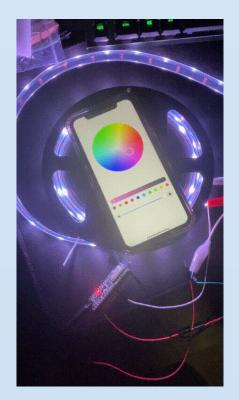




App User Interface

Prototype and Testing for LEDs

Setup


- The prototype features an ESP32 microcontroller directly connected to a WS2812B RGB LED strip.
- Communication with the mobile app

ESP32 Microcontroller

ESP32 serves as a web server

Communication

- The ESP32 connects to the local WiFi network
- The app sends RGB colors and brightness levels to the ESP32

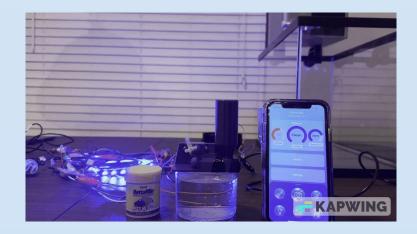
Prototype and Testing for Temp. Readings

Setup

- The prototype utilizes an ESP32 microcontroller connected to the DS18B20 temperature sensor via a terminal sensor adapter.
- The sensor provides 9 to 12-bit temperature readings over a 1-Wire interface so that only one wire (and ground) needs to be connected.

Communication

- The mobile application can communicate either locally or remotely.
- The MCU communicates with the mobile application via ADAfruit IO.


Prototype for Food Dispenser

Setup

- The prototype utilizes an ESP32 microcontroller connected directly to a sg90 servo motor.
- The mobile application serves as the controller.

Communication

- The mobile application can communicate either locally or remotely.
- The MCU communicates with the mobile application via ADAfruit IO.

 The food dispenser releases 0.05 Oz of 2mm food pellets every 25 seconds

Budget and Financing	
Component	Estimated Price
ρΗ Sensor	\$50
Temperature Sensor	\$10
Turbidity Sensor	\$20
Dispenser(s)	\$20
LED Lights	\$16
Development boards	\$18
Micro SD Card Module	\$8
Servo Motor	\$7
Stepper Motor	\$24
PSU	\$8
Custom PCB	~\$79
Total	\$278

Christian Rosado

- Mobile Application UI
- App Logic
- Peripheral & MCU programming
- Database

Rafael Nieves

- Sensor Schematics
- Sensor PCB Design
- MCU Schematic
- MCU PCB Design

Jazz Olario

- Mobile Application UI
- App Logic
- Peripheral & MCU programming
- Web Server

Gabriel Besana

- Motor Controller Schematic
- Voltage Regulator Schematic
- Voltage Regulator PCB Design

Software Challenges

Challenge:

• The MCU handling multiple sensor readings at a time.

Solution:

Establish a queue system.

Challenge:

 Data synchronization problems between ESP32 and the mobile app.

Solution:

 Opting for long polling communication instead of websocket communication.

Hardware Challenges

Challenge:

Communication issues with ESP32 board when connecting the sensors.

Solution:

Troubleshoot the hardware and software side to find any discrepancies.
 Finding the compatibility issues, electrical noise, and or power supply issues

Challenge:

PCB troubleshooting. Incorrect components, layout issues, grounding issues.

Solution:

 New board layouts and iterations or resoldering of new components to fix any issues on our boards.

Challenge:

Improper data voltage signals from the sensors to the MCU.

Solution:

Creation of a voltage divider board in between our mcu and sensors to step down the 5V signal to 3.3V signal that our MCU can read.

Thanks for watching!